Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Vaccine ; 41 Suppl 1: A48-A57, 2023 04 06.
Article in English | MEDLINE | ID: covidwho-2243472

ABSTRACT

After six years without any detection of poliomyelitis cases, Angola reported a case of circulating vaccine-derived poliovirus type 2 (cVDPV2) with paralysis onset date of 27 March 2019. Ultimately, 141 cVDPV2 polio cases were reported in all 18 provinces in 2019-2020, with particularly large hotspots in the south-central provinces of Luanda, Cuanza Sul, and Huambo. Most cases were reported from August to December 2019, with a peak of 15 cases in October 2019. These cases were classified into five distinct genetic emergences (emergence groups) and have ties with cases identified in 2017-2018 in the Democratic Republic of Congo. From June 2019 to July 2020, the Angola Ministry of Health and partners conducted 30 supplementary immunization activity (SIA) rounds as part of 10 campaign groups, using monovalent OPV type 2 (mOPV2). There were Sabin 2 vaccine strain detections in the environmental (sewage) samples taken after mOPV2 SIAs in each province. Following the initial response, additional cVDPV2 polio cases occurred in other provinces. However, the national surveillance system did not detect any new cVDPV2 polio cases after 9 February 2020. While reporting subpar indicator performance in epidemiological surveillance, the laboratory and environmental data as of May 2021 strongly suggest that Angola successfully interrupted transmission of cVDPV2 early in 2020. Additionally, the COVID-19 pandemic did not allow a formal Outbreak Response Assessment (OBRA). Improving the sensitivity of the surveillance system and the completeness of AFP case investigations will be vital to promptly detect and interrupt viral transmission if a new case or sewage isolate are identified in Angola or central Africa.


Subject(s)
COVID-19 , Poliomyelitis , Poliovirus , Humans , Sewage , Angola/epidemiology , Pandemics , COVID-19/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/adverse effects , Disease Outbreaks/prevention & control
2.
Pan Afr Med J ; 38: 159, 2021.
Article in English | MEDLINE | ID: covidwho-1145704

ABSTRACT

INTRODUCTION: the new coronavirus (COVID-19) that emerged from Wuhan, Hubei Province of China in December 2019, causing severe acute respiratory syndrome (SARS) has fast spread across the entire globe, with most countries struggling to slow and reduce the spread of the virus through rapid screening, testing, isolation, case management, contact tracing, implementing social distancing and lockdowns. This has been shown to be a major factor in countries that have been successful in containing COVID-19 transmission. Early detection of cases is important, and the use of geospatial technology can support to detect and easily identify potential hotspots that will require timely response. The use of spatial analysis with geographic information systems (GIS) had proved to be effective in providing timely and effective solutions in supporting epidemic response and pandemics over the years. It has developed and evolved rapidly with a complete technological tool for representing data, model construction, visualization and platform construction among others. METHODS: we conducted a geospatial analysis to develop a web mapping application using ArcMap and ArcGIS online to guide and support active case search of potential COVID-19 cases, within 500m radius of COVID-19 confirmed cases to improve detection and testing of suspected cases. RESULTS: the web mapping application tool guides the active case search teams in the field, with clear boundaries on the houses to be visited within 500-meter radius of confirmed positive cases, to conduct active case search of all cases of severe acute respiratory illnesses (SARI), acute respiratory illnesses (ARI), pneumonia etc, to detect and test for COVID-19 towards containing the pandemic. CONCLUSION: the use of GIS and spatial statistical tools have become an important and valuable tool in decision-making and, more importantly, guiding health care professional and other stakeholders in the response being carried out in a more coherent and easy manner. It has proven to be effective in supporting the active case search process to rapidly detect, test and isolate cases during the process, towards containing the COVID-19 pandemic.


Subject(s)
COVID-19/epidemiology , Geographic Information Systems , Public Health , COVID-19/diagnosis , Cross-Sectional Studies , Humans , Severe Acute Respiratory Syndrome/virology , Spatial Analysis , Zimbabwe/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL